CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Ordinary Level

MARK SCHEME for the October/November 2012 series

5129 COMBINED SCIENCE

5129/22

Paper 2 (Theory), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark So		Syllabus	Paper
			GCE O LEVEL – Octo	ber/November 2012	5129	22
1	glar bloo tarc live	od get	[4]			
2	(a)	= 6.0	or 2.5 × 2.4 dependent)			[1] [1] [1]
	(b)	no. turns strength area of o mass of	of magnetic field coil	any two speed alone and weight	alone	[2]
3	(a)	arrow <u>ve</u>	rtically down (anywhere or	n diagram)		[1]
	(b)	(i) Pat	beginning of path (above t	the building)		[1]
		(ii) Kat	end of path			[1]
		(,	она он раши			1-1
	(c)	rate of cl change i	nange of velocity / speed n velocity / time	any 1		[1]
4	(a)	2, 8 (igno	ore correct charge)			[1]
	(b)		(divide by 10) (divide by 4) ighout			[2] [1] [1]
	(c)	ionic / el	ectrovalent			[1]
5	(a)	concrete	expands			[1]
	(b)	path / co	ncrete buckles ncrete cracks / breaks destroy path / concrete	any 1		[1]

			2 0 12 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.20	
6	(a)	(i) A = (cell) n B = cytopla C = nucleu	asm		[3]
			allows movement of substances into the cell allows movement of chemicals out of the cell	any 1	[1]
	(b)	-	ation must match the difference. ce and explanation together]		
		difference explanation	no nucleus (in red blood cell) (cell can contain) <u>more</u> haemoglobin (cell can carry) <u>more</u> oxygen		
		difference explanation	biconcave (disc) shape large surface area (per volume) increased uptake of <u>oxygen</u> (in lung capillar increased release of <u>oxygen</u> (in tissue capil faster diffusion ignore: easier to carry oxygen		
		difference explanation	flexible / small size of red blood cell cell can pass through capillaries rapidly		[6]
7	(a)	(i) gamma / ŋ	,		[1]
		(ii) alpha / α			[1]
	(b)		es into proton / p increase by 1 and n decrea : electrons change	se by 1	[1]
	(c)		from 💄 any 2	<u>'</u>	[2]
8	(a)	magnetic mate non magnetic r	rials are attracted to magnets / can be magne materials are not / cannot be magnetised	etised } any 1	[1]

GCE O LEVEL – October/November 2012

Paper 22

Syllabus

5129

	Page	4 Mark Scheme Sylla	abus Paper
	J -		29 22
	(b) (i)	steel is a hard magnetic material steel retains magnetism / permanent steel hard to magnetise iron is soft magnetic material iron easily loses magnetism / temporary iron easy to magnetise	[1]
	(ii)	no difference/ none / no effect	[1]
	(iii)	more turns	
	(111)	more current (voltage) / add more batteries	[2]
	(c) 0.8	3	[1]
9	(a) A	= sulfuric (acid) / H ₂ SO ₄	
		= water / H ₂ O = copper / Cu	[3]
	0	- copper / Ou	[0]
	filto co igr	aporate (some of the water) / heat / boil er the crystals ol / crystallise nore initial filtration aporate to dryness max 1 mark	[2]
	co co ma du sh hig	gh melting / boiling point nducts heat nducts electricity alleable ctile iny gh density	[2]
	SO	norous	[2]
10	(a)	a single seed may be defective / not all seeds germinate to give a fair test some seeds might not work	y 1 [1]
		come decad might not work	1.1
	(b) (i)	add water to the cotton wool	[1]
	(ii)	all the oxygen has been absorbed / oxygen absorber (present)	
	,	without oxygen the cells cannot <u>respire</u> respiration is necessary to release energy energy is needed for growth / germination any 1	[2]
	(iii)	temperature is too low / seeds are too cool / T is 4 °C	
		reactions are too slow at low temperatures reference to enzymes working slowly / inactive at low T	y 1 [2]

	Page 5			Mark Scheme Syllabus		Paper	
				GCE O LEVEL – October/November 2012	5129	22	
11	(a)	(i)	I = V = 0.5	//R or 1.0/2		[2]	
		(ii)	4.0			[1]	
	(b)	(i)	redu	ced / decrease		[1]	
		(ii)	redu	ced/ decrease		[1]	
12	(a)	H ₂				[1]	
	(b)	ste	am ha	gained oxygen as lost oxygen orrect explanations in terms of electrons or oxidation	n states	[2]	
	(c)	(i)	wate	gen / O ₂ er / H ₂ O ept steam / water vapour		[2]	
		(ii)	-	anising not accept: sacrificial protection / electrolysis		[1]	
13	(a) they are soluble in water absorbed by root hair cell diffusion cell has large surface area (per volume) allow reference to active transport if given do not accept: osmosis		d by root hair cell arge surface area (per volume) erence to active transport if given		[2]		
	(b)	(i)	2200) (kg per hectare)		[1]	
		(ii)	40 kg 8200	g per hectare gives yield of 8200 kg per hectare g per hectare gives yield of 5900 kg per hectare 0 – 5900 = 2300 kg per hectare w ecf for 1 mark if calculation is correct from incorre	ect readings)	[2]	
		(iii)		gen (proteins) needed for growth gen needed to make amino acids / proteins		[2]	
		(iv)	9100	0 – 9200 (kg per hectare)		[1]	
	(c)	pro pla (an	ductic nts are imals	on of light energy into chemical energy on of carbohydrates / glucose e source of food / energy for animals need) oxygen (to breathe / respire) ance of O ₂ / CO ₂ balance in the atmosphere	any 2	[2]	
		ma	1111 0 116			[2]	

	Page 6		Mark Scheme Syllabus			Paper			
			GCE O L	EVEL – Octobe	er/November 2012	5129	22		
14	(a)	(a) C_nH_{2n}							
	(b)	(i) addi	tion / reductic	n/ hydrogenatio	on / redox		[1]		
		(ii) (carl	on to carbon) double bond /	C=C		[1]		
	(c)		Н	н					
			c —	- C					
			I Н	H H					
		oper	ı ended + rep	eat unit n times	s (below and after) (inde	ependent)	[2]		
15	(a)	a blocka	ge of the (cor	onary) <u>arteries</u>			[1]		
	(b)	high bloc lack of ex smoking	od pressure xercise life / life-style	lesterol diet / ob	pesity any 2		[2]		
16	(a)	1.8					[1]		
	(b)	9.16					[1]		
17		ckwise iclockwise	_	all four correct	t = 2 marks				
	anticlockwise 2 or 3 correct = 1 mark horizontal / balanced						[2]		
18	(a)	three sha one lone					[2]		
	(b)	covalent low non-meta	al non-meta	al (1 mark for b	ooth)		[3]		

	ı age <i>ı</i>		Wark Ocheme	Oynabus	ι αρει
			GCE O LEVEL – October/November 2012	5129	22
19	(a)	90 degre	ees to mirror where ray is incident		[1]
	(b)	< incider	nce = < reflection (approx)		[1]
	(c)	in approx	ximately the correct position		[1]
20	(a)	carbon d	lioxide		[1]
	(b)	acetylen	e and oxygen (both)		[1]
	(c)	nitrogen			[1]
	(d)	sulphur o	dioxide correct formulae		[1]

Syllabus

Paper

Mark Scheme